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The effect of dissipation on tunneling is investigated by solving numerically the time-dependent
Schrodinger equation for a double-well potential both in the resonant and the nonresonant case. Two
existing dissipative terms are studied and an additional term appropriate for the damping of the squeez-

ing motion is proposed.
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I. INTRODUCTION

A false vacuum decays due to thermal fluctuations or
through quantum tunneling. This process is the heart of
the reaction rate theory and was intensively investigated
in connection with the nucleation phenomena in statisti-
cal physics [1], with fission decay in nuclear physics [2],
and with inflationary models of the universe in field
theory (cosmology) [3,4].

The equilibrium rate of the thermally activated nu-
cleation, such as the condensation of a supersaturated va-
por or the boiling of a superheated fluid may be expressed
as Ag =ve /%" where E, is the activation energy and
v a model-dependent factor. The stationary rate for de-
cay through quantum tunneling of a metastable state was
calculated using various semiclassical methods (WKB,

path integrals) as A = fe W /ﬁ, where f is the frequency
of “barrier assaults” and W, is the effective action evalu-
ated along the classical periodic orbit through the turn-
ing points in the inverted potential [5,6].

The importance of dissipation in the computation of v
became first evident in the chemical reaction rate theory
[7]. These reactions are activated by the molecular
Brownian motion induced by the thermal random forces
connected through the fluctuation-dissipation theorem
with the temperature T and the friction coefficient y.
Thus, we may expect a strong decrease in the reaction
rate both at weak and strong friction. For the case of
moderate-to-strong friction, the reaction rate is given by
Kramers [8]

wa
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V1tnt—mnye 7T (1)

A=

where 7, =v /2w,, and o, are the frequencies of the
linearized molecular potential around the metastable
minimum (a) and around the barrier (b).

The effect of dissipation on bound quantum states was
a puzzling problem since the early days of the quantum
theory, when it was realized that the atomic electrons do
not dissipate the energy by electromagnetic radiation as
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was predicted by the classical electrodynamics. For the
first tunneling process investigated, the a decay, the dissi-
pation was also practically absent, and the decay rates
were described satisfactorily by the Gamow formula.
The importance of dissipation during nuclear decay was
mentioned for the first time in connection with the near-
barrier fission of actinide nuclei [8]. Although initially
there seemed to be no need for dissipation, because the
fission widths were well reproduced by the simple Bohr-
Wheeler formula [9], the calculus of the kinetic energy in
the final state suggested the opposite. At normal fission,
not all the reaction energy is released as kinetic energy of
the fragments, but about 10% is transferred to their in-
trinsic degrees of freedom during the descent from the
saddle point to the scission configuration [10]. In princi-
ple, this transfer could be accounted for if the cross sec-
tion was obtained by a coupled channel calculation in-
cluding many inelastic channels. Since such a calculation
is not feasible, it appears natural to model the global
effect by a phenomenological friction coefficient for the
nuclear shape dynamics. Unfortunately, even at this level
the problem has no definite answer, because the type of
the nuclear friction and the related dissipation mecha-
nism are not yet known. However, assuming friction
forces linear in the velocities and high excitation energies,
the Kramers formula can be directly applied to estimate
the fission decay rate [11].

Attempts to develop a quantum theory of dissipative
tunneling are relatively recent, starting with the work of
Caldeira and Leggett [12]. Their result was that for po-
tentials with a single metastable minimum, at 7 =0 the
dissipation decreases the tunneling rate exponentially.

For double-well potentials new effects occur due to
back scattering. Without dissipation, in such systems the
phenomenon of “quantum coherence” appears, when the
localization probability in either well undergoes periodic
oscillations. In general, these oscillations characterize
two-level systems [13] and may be observed also for
nongeometrical degrees of freedom, as is the case of the
neutrino oscillations or the strangeness oscillations of the
K° mesons [14]. Within the two-level approximation, it
was shown [15] that in symmetric double-well potentials
the presence of the frictional forces destroys the quantum

coherence oscillations and the tunneling becomes
aperiodic. Moreover, when the friction coefficient
1996 ©1995 The American Physical Society
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exceeds the critical value ¥, =27#%/mD?, with m the par-
ticle mass and D the distance between the potential mini-
ma, the “self-trapping’ may appear, namely, after infinite
time the particle has more than a 50% probability to be
localized in the initial well.

For asymmetrical double-well potentials, the problem
of self-trapping and energy loss was considered in [16],
showing that the dissipated energy saturates at a value
limited by the bottom of the stable well and the particle is
always allowed to escape. Thus, the self-trapping does
not appear in this case, although the tunneling is strongly
suppressed when the friction constant exceeds y.. How-
ever, more exact calculations of the tunneling probability
using the time-dependent Schrodinger equation (TDSE)
have shown that in such double-well potentials the reso-
nance effects are very important, and the nonresonant
states practically do not tunnel even in the absence of dis-
sipation [17]. In addition, saturation value of the energy
loss should be clearly limited by the true ground-state en-
ergy.

The purpose of the present work is to clarify these as-
pects by investigating the tunneling for resonant and non-
resonant states in double-well potentials using TDSE
with dissipative terms. Because there is no standard way
to introduce dissipative terms in TDSE, we consider two
phenomenological models, presented in Sec. II. In the
first, the rate of energy decrease is supposed to be propor-
tional to its fluctuation (Gisin [18]), while in the second it
is proportional to the square of the average momentum
(Albrecht [19]). The Gisin model, being a special case of
the optical model, is expected to be relevant when both
the particle and the environment are quantum objects. In
the semiclassical limit, when the frictional force tends to
be proportional to the velocity, the Albrecht model
should apply.

Before investigating the tunneling problem, Sec. III
discusses the effect of the Gisin and Albrecht terms on
the time evolution of the Gaussian wave packets in a har-
monic oscillator potential. The main difference between
these terms is revealed by the “squeezing” motion of the
wave function [20], which is not damped by the linear
friction term. The Albrecht-like dissipative term for
squeezing will be constructed by using appropriate coor-
dinate and momentum operators.

Section IV presents numerical results for dissipative
tunneling of a Gaussian wave packet in an asymmetric
double-well potential with a variable width of the stable
well. By changing this width, it is possible to study the
resonance effects. Section V is devoted to a survey of the
main results and to the concluding remarks.

II. PHENOMENOLOGICAL MODELS
FOR DISSIPATION

Within the phenomenological models one assumes that
the pure states are preserved during the time evolution
and the “free’” Schrodinger equation

iﬁ%t/i —H, ¥ @

is modified due to the coupling with the environment by a
term W), additional to H,, accounting for the loss of en-
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ergy. This term depends on 3, making the modified equa-
tion nonlinear and violating the superposition principle.

Although there is rich literature on the possible dissi-
pative terms, in the following we will restrict ourselves
essentially to two models [18,19], which we believe to be
representative.

A. Gisin model

This approach [18] follows the lines of the optical mod-
el where the inelastic channels are accounted for by the
use of a complex potential. Additional complex terms
were used for the treatment of a large variety of phenom-
ena in nuclear [21] as well as in solid-state physics [22].
A phenomenological treatment of dissipative tunneling
for squeezed states in double-well potentials by adding
imaginary terms to the energy was given in [23]. In
Gisin’s model, they are constructed by using the initial
Hamiltonian, although this choice cannot be related in
general to the velocity-dependent frictional force from
the classical mechanics.

Within the Gisin model, the time evolution of the wave
function |9 ) is given by

m%’tﬁzﬂw—ixmo—wlmw))w , 3)

where A is the damping coefficient. The rate of dissipa-
tion for the energy E = {y|Hy|¢) is

95— L m3 ) — (I H 1)) @
dt #i

appearing proportional to its fluctuation. Therefore, the
eigenstates of H, remain stationary, and there is no dissi-
pation for the free particle. Otherwise the energy is dissi-
pated until the wave function approaches the state with
minimum energy contained in the initial wave packet
[18].

B. Albrecht model

In this model [19] the additional term W, is chosen
such that when Hy=p?/2m +V,,, the correspondence
principle is fulfilled and the Ehrenfest theorem gives for
the expected values of the coordinate and momentum the
classical equations of motion with friction

d(x) _(p)
dt m (3)
i%’;—)=—<%f>—y<p>. ©

These equations are not very restrictive for the choice of
W ., and additional criteria may be added, namely that
the ground state of H is preserved and the energy dissi-
pation law has the classical form E=—y /m (p )?. Thus,
a free particle dissipates energy, while a stationary state
of vanishing average momentum remains stationary.
This behavior seems similar to the one required by the
virial theorem in the classical mechanics [24], where for a
system of particles subject to conservative forces and fric-
tional forces proportional to the velocity the motion does
not die, but it reaches a stationary state.



1998

An operator satisfying these conditions and which is

invariant to the space translations is W, =y(x
—{x)){p), with y the friction constant. Thus, the
modified TDSE is

3 _

i =Hop+y(x — (Ylx [¥))(9lply )y @)
and the corresponding dissipation law

d{y|Holy)

SR L (yply)2. ®

However, in the present study we will use for simplicity
the “noninvariant” form W ,=yx{p), because the
time-dependent function —y{(x ){p) contributes to the
solution of TDSE only with a coordinate independent
phase factor.

Besides the arguments based on the correspondence
principle, it is possible to derive the Albrecht term by a
variational treatment of the standard model for dissipa-
tive systems, assuming the quantum particle to be cou-
pled bilinearly to a bath of classical harmonic oscillators
(see the Appendix). The variational approach has the
quality of avoiding the ambiguities related to the canoni-
cal quantization of the Langevin equation [25,26], and in
general it produces a nonlinear Schrodinger equation
with memory friction.

III. GAUSSIAN WAVE PACKETS IN A HARMONIC
OSCILLATOR POTENTIAL: ANALYTICAL RESULTS

A straightforward application of the phenomenological
models is the time evolution of the Gaussian wave pack-
ets by the harmonic oscillator Hamiltonian

2 ma)(z)
Hy=2_+ 2,
o= om 5 X 9)
Let us consider at t =0 a Gaussian wave packet
o |17 ,
¢(x,t=0)= _-()_ e*co(X*uO) /2 (10)
T
having the width o3={(¢|x2|¢y)—(Y|x|¥)*=1/2¢,,

placed at (¢|x|¢¥)=u, and with no momentum,
(¢lplY)=vy=0. A trivial situation appears when
Co=Cp, ¢, =mawy/#, and uy=0, because in this case the
considered wave packet is the exact ground state |g) of
H, and the whole evolution is given by a time-dependent

—iwyt/2
phase factore ~ ° .

A. Coherent states

If ¢cg=c, but uy, 70, the wave packet (10) is a “shifted
ground state” |1 ) because it is eigenstate of the shifted
Hamiltonian Hu0=p2/2m +mawd(x —uy)?/2 and is re-
lated to the ground state of H, by a unitary transforma-
tion generated by the momentum operator p

|¢G> *(iuo/ﬁ)plg> ) (11

This state is nonstationary and is called the Glauber
coherent state. Without dissipation it preserves its shape
in time, but it changes the average position
u,={¢g()|x|g(t)) and the average momentum
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v, ={g(t)plYs(2)) according to the classical Hamilton

equations for the harmonic oscillator, such that

u,=ugcos(wyt ), and v,= —mawguysin(wgt). In the coor-

dinate repres(e/nt)z}iltlon the wave packet at the time ¢,
i t

lYg(1)) =e " l96(0)) is

Yolx,1)=

1/4
Co ] o Ti@0t/2, meqlx —u, /24 M (x —u, /2)

(12)
This wave packet may be written also as
. + *
l¢G(x’t)>=e-tmot/2ez'b -z, b| >
Here z, _\/c /2(u,+iv, /fic, )—e tzo is a complex
function of tlme, and b= \/c /2(x +ip /#ic,) is the
Dirac-Fock annihilation operator.

The addition of the dissipative terms Wy
=—iMH,—{H,)) or W,=yx{p) preserves this form
of lt/JG(x,t)), (up to a time-dependent phase factor) and,
therefore, the Glauber states remain coherent. The effect
of the frictional forces appears only on the time evolution
of the parameters u and v, which now, instead of the har-
monic evolution have damped oscillations.

In the case of W, the evolution of the Glauber wave
packet is given by

(13)

—iwogt/2 zl}‘b+—(z[}”)*bi )
e ’

le(x,5,1)) =e (14)
. — Aoyt —iont ..
with z}=e "¢ '“7Z; and the average position and
momentum:
—Awyt —Awgt .
ut=uge "“Ocoslwgt), v}=—maguge  sin(wyt) .

If the additional term is W, the wave packet becomes

+ *
|¢G(x t, ,}/)> = —i<1>(t)eztyb =z b|g )
with z,”——\/c 72} +iv] /fic,), ul=uge V" *cos(Qt
+ o) /coséy, vy = —mﬂziog_f_/@ (Q1)/cos*(dg),
tan(¢y)=—y /29, and Q=1 wi—(y/2)%. These solu-
tions are different with respect to the ones obtained for
W, but the comparison of the exponential terms shows
that similar effects may be expected for y =2Aw,,.

The phase factor (z) is

, (15)

o= 4
t‘ = ——
2

(vou}f—u,w))

Y[ty _
r fodt o) (u) .

u,.)+

(16)

and depends on y. At large times when u and v become
0, the Gaussian wave packet becomes the ground state of
H, and only ® is keeping records on the past history of
the wave function.

A general discussion of the multidimensional case may
be found in [27].

B. Squeezed states

When c(f/ﬁcp and u =0 the wave packet represents a
squeezed state, |1,,) and it is nonstationary. Writing ¢,
as mw/#, we can easily see that the squeezed states are

eigenstates for an oscillator Hamiltonian having the fre-
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quency o instead of w,. In the three-dimensional case, if
H, corresponds to a spherical harmonic oscillator, then a
squeezed state will be the ground state of a deformed har-
monic oscillator. For the nuclear mean field, this change
of shape appears when the quadrupole operator Q, has a
nonvanishing ground state expected value and the
quadrupole- quadrupole interaction term may be written

as —dmwi(2z2—x*—y?)/6 with & the deformation pa-

rameter. In this case, the oscillator frequencies are
changed from o, to o,=w,=wV'1+8/3, and

w,=wyV'1—28/3. In one dlmensxon the squeezed state
|z/;sq> is the elgenstate of the Hamlltoman H,=H,—puK
where u=(w3—w?*)/wy, K =c,x 2/2, and it can also be
related to the ground state of H, by a unitary transfor-
mation [28]

W) =e *g), (17)

with  po=In(wy/w) and S,=i[(b")*—b2]/4=(xp

+px)/44.
Without d1s51pat10n this wave function becomes in

—(i/F)Hyt
timee /7o |¢sq( 0)), and up to a phase factor it can be
written as

W’sq(t) )=e _iptKe
with

REEIP N (18)

, (19)

(1)
p,=In (;Ocosz(a)ot)-i-ﬂ-sinz(a)ot)

@9
2 | @y sin(2wgyt )
p==|=-2 —20 , (20)
Cp @ CUO 80’,

and o?=(x2)—(x)2=¢" /2¢,. These equations show
that the free squeezing motion may be observed as an os-
cillation in the width o of the wave packet having the
frequency 2w,.

The Gisin dissipation term preserves the form (18) of
the squeezed states, but has the effect of changing in time
the frequency w towards w, Denoting this time-
dependent frequency by w(?), w(t =0)=ow, then

e™tanh(Awyt )+ 1
o(t)=ay 21)
e+ tanh(Awyt)

and the oscillations of the width are damped according to
the law
21 Do (1)

- cosX(wgt )+
"2, | () 0 w,

sin?(@t) (22)

until the squeezed state becomes identical to the ground
state g ).

The Albrecht procedure is ineffective; the squeezing os-
cillations are not damped by the addition of the term
W ,=yx{p) to Hy. According to (8), the energy is dis-
sipated only if the momentum has a nonvanishing aver-
age value, which is not the case for the squeezed states.
In fact, the squeezing represents an additional degree of
freedom for the quantum dynamics, beside the “center of
mass”’ degree of freedom and it is necessary to construct

W , using the appropriate coordinate and momentum
operators. The comparison of the shifted states (11) and
(17), which are ground states for H, and H, respective-

ly, suggests that the relevant coordinate operator is relat-
ed to the additional term in H, (., responsible for the

shift. For squeezing this operator is K, and the related
momentum operator appears to be S,. With this choice
i[Hy,K]/%i=2w,S,, similarly up to constant factors to
i[Hy,x]/A=p/m. It is worth noting also that the aver-
age (Y|K ) =c,07/2 gives the width. However, by
contrast to the usual commutation relations between the
canonical coordinate and momentum [x,p]=i#, the com-
mutation relations between K and S, are more complicat-
ed, [K,S,]=iK. Using these operators, we can write the
corresponding Albrecht term for the squeezing dynamics
as W =v K (S,).

In a11 the considerations about squeezing presented
above, we have assumed that the coherent state motion is
absent, such that (x)=0 and {(p)=0. To account for
this motion we have to write W in a translation invari-
ant form, and in the following this will be

—Ysq
W= >
It is important to remark that this term has no effect on
Eq. (5) and (6) for the center of mass motion. The dissi-
pation law given by W is

dE _

dt
and, as expected, it is proportional to the square of the
average squeezing momentum.

(x —{x N2 ({xp+px)—2{x){p)) . (23)

—¥sq({xp+px ) —2(x){p))? (24)

IV. DISSIPATIVE TUNNELING THROUGH
AN ASYMMETRIC DOUBLE-WELL POTENTIAL:
NUMERICAL RESULTS

In the numerical calculations we have used the
double-well polynomial potential ¥ and false vacuum
wave function v, (Fig. 1) employed previously [17,29] for
the study of resonances in quantum mechanical tunnel-
ing. The potential is

0.6

Tl

0.0

FIG. 1. The potential V (solid) and the initial wave function
[4o]? (dots).
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as(x +32(x —2)(x —6) if x <3

— 825 fI<x<2
384 lfl'_'x_Z_i_d

VOI=1 s (x —d +3)x —d —2)(x —d —6)
ifx=>3+d,
having the metastable minimum at x = —3 and the bar-

rier height V,, =V (x =0)=0.83. Here, d is a parameter
allowing a widening of the second well such that it may
be tuned to obtain resonances. For a particle of unit
mass, the first ones are obtained at d =0.4, 1.97, and 3.5,
when avoided crossings between the energy levels of the
Hamiltonian H,=p?/2+V(x) occur [29]. The initial
wave function 1, is a Gaussian wave packet (10) having
the parameters u,= —3, v,=0, and 03=0.6. This wave
function is the ground state of a particle with m =1 in
the harmonic oscillator potential having w,=0.69,
chosen to approximate V(x) around the left-hand
minimum. In the polynomial potential, the average ener-
gy (YolHylwy) of ¥, is E;=0.425. The bottom of the
right-hand well, between § and 2+d is —1.62 and at the
first resonance (d =0.4) the true ground-state energy is
—1.23.

The time-dependent Schrodinger equation for the
Hamiltonian H =H,+ W ,, was solved numerically by
the iterated leap-frog method [30], considering for W,
the terms W, W 4, or W . The quantities of interest are
the time-dependent probability p(¢) to find the wave func-
tion in the right-hand well (x > 0) and the energy E (¢).

Without dissipation [E (¢)=E] the tunneling p has an
oscillatory behavior, represented in Fig. 2 for three values
of d chosen such that one corresponds to the first reso-
nance (d =0.4) and the other two are symmetric on both
sides of the resonant value. At d =0.4, the energies of
the second and third excited states of H, are €,=0.375
and €;=0.400, slightly lower than E,. The quantum
coherence oscillations [29,31] for this quasidegenerate
doublet, p2’3(t)=sin2(At/2), A=|63——62\, have maxima
at odd multiples of 7/A=125, almost the same as of the
free oscillation observed for our initial wave packet at
d =0.4 (Fig. 2). This indicates that without dissipation,
the second and third levels are indeed the relevant ones
for the problem.

For d <0.4, one of these energies increase (€3), while
the other maintains almost the same value and at d > 0.4,
one of the energies decrease (¢€,), while the other stays al-
most constant [29]. This behavior may be significant for
the study of dissipative tunneling: If a loss of energy
occurs, one may expect to observe an enhanced tunneling
effect for d =0.5 as compared with d =0.3.

At low-to-moderate damping, for each of the terms W
considered, one can distinguish three main stages. (1)
For short times, the oscillatory behavior of p (existing in
the absence of the dissipation) is still present, and for
d =0.4, 0.5 the particle does not completely return in the
first well. As expected, a different behavior is observed at
d =0.3, when the dissipation has the tendency to localize
the particle in the first well. The energy decrease during
this stage is relatively small. These features are illustrat-
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ed in Fig. 3(a) for W, with y=0.05. (2) When p ap-
proaches 0.5 a transitory stage starts, characterized by a
strong decrease of energy and irregular oscillations of p.
During this period, the wave function changes its shape
fast to accommodate for the energy loss, becoming a
combination of eigenstates localized in the right-hand
well. (3) For large times p tends toward 1 and the energy
becomes close to the ground-state energy. In this asymp-
totic stage the wave function is almost the ground-state
Gaussian and it has damped oscillations in the second
well by changing the average position and the width in a
similar way as discussed in the previous section for the
harmonic oscillator potential. For the Gisin model, the
asymptotic stage is reached in a relatively short time, [see
Fig. 3(b)], decreasing continuously when A increases.

Beside the common qualitative features presented
above, a more precise analysis reveals important
differences between the three dissipative terms considered
here. For a quantitative comparison it is useful to relate
the time scale to a measurable quantity. Thus, one can
try to compare the energy E for a given value of p, or p
for a given amount of dissipated energy. An obvious
choice for such reference values would be p =1 or E
equal to ground-state energy, but this is hard to use be-
cause, in general, such values are reached at very large
computer times.

The calculations with the linear friction term W, have
shown that the main decrease of the energy appears after

d=0.5

d=0.3

0.0 o | S N T A N

0 200 400 600 800 1000
1.

FIG. 2. The tunneling p without dissipation for d =0.3, 0.4,
and 0.5.
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the moment 7T, of “half tunneling”, when the localized
probability in either well is the same for the first time,
suggesting the choice p.=0.5. Another important mo-
ment is T, when the energy becomes negative, since the
interval between T, and T, gives an idea about the
length of the transitory period.

10 |
A
0.6

0.4

D E/E,

0.2

0.0 1 1 1

0.8}
06 |
0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.4

0.2

009 50 100 150 200

t
FIG. 3. (a) Linear damping. The time dependence of the tun-
neling p (solid) and the energy E/E, (dots) for ¥y =0.05. (b)

Gisin damping. The time dependence of the tunneling p for
d =0.45.

The half-tunneling time 7, and the corresponding
value of the energy E, are shown in Figs. 4—6 for tlLe
three damping terms investigated both in the resonant
(d =0.4) and nonresonant case (d =0.3 and 0.5).

In the Gisin model (Fig. 4) for d =0.3 and 0.5, the tun-
neling of the first half of the wave function appears short-
ly after Ty and is accompanied by the loss of a large
amount of energy for all A values, in a period of time
monotonically decreasing with increasing A. Without
dissipation, for d =0.3 and 0.5, the tunneling is never 0.5
and this is why T, increases very much for small A. By
contrast, for d =0.4 and A <A, A, =0.075, the tunneling
is faster, less dissipative, and less dependent of A. The
maximum of p at ¢ =125 is the last one surviving from
the free quantum coherence oscillations, but it disappears
at A=0.045. If A increases over A, then T, and E, de-
crease strongly, following the behavior of the non-
resonant case.

In the Albrecht model (Fig. 5), the first half of the
wave function penetrates quickly without losing much
energy (for d =0.5) or slowly losing a lot of energy (for
d =0.3). The case d =0.4 shows both regimes depend-
ing on the value of y. It is interesting to remark that
when y=v,., y.=0.1, the maximum of p at ¢t =125
disappears and p remains almost constant ( ~0.5) during
a relatively long interval 100 =<7 <220. This value of y
would give self-trapping [13] in a symmetric double-well
potential having the potential minima separated by the
same distance D =7.5, as in the case of V(x). The oc-
currence of this long-living state is reflected by the
discontinuities of the E, and T, plots from Figs. 5(a) and
5(b). The ratio y,/2A,=0.66 is close to w;=0.69, in
agreement with the correspondence between ¥ and A sug-
gested by their damping effect on the coherent states, in-
vestigated in Sec. IIT A.

The results obtained with the squeezing dissipation,
Eq. (23) are shown in Fig. 6. For d =0.4 and vy, <0.005,
the dissipation effect is stronger than observed for W or
W ,: a given amount of energy is lost in shorter time.
This aspect shows that the squeezing mode is very impor-
tant during the tunneling process. The change in the
shape of the wave function means also a change in the
width, and this is strongly affected by the squeezing dissi-
pative term. At large ¥, the tunneling slows down and
T, increases, such as in the case of W ,, but E, decreases
and becomes negative as was observed for W.

Worth noting is that in Figs. 4(b) and 6(b) there is a
unique value of the dissipation constant when T, =T,.
For this value, the system arrives at half tunneling with O
energy, by contrast to the linear friction case, Fig. 5(b),
when the energy at T, is always positive.

For linear friction and ¥y =y, the values of T}, and T,
are represented as function of d in Fig. 7. They do not
have a monotonical behavior, but it appears to be an op-
timal d, higher than the resonant value, when the tunnel-
ing and the dissipation are favored such that 7, and T,
have minima.

V. SUMMARY AND CONCLUSIONS
The topic of dissipative tunneling is one of the few re-
lated to such a wide variety of problems, ranging from
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the conceptual foundations of quantum mechanics to the
physics of Josephson junction or superconducting quan-
tum interference devices. In particular, at the nuclear
scale the dissipative phenomena play a key role in the un-
derstanding of fission or fussion reactions.

In this paper, the dissipation is treated phenomenologi-
cally, inserting nonlinear damping terms in TDSE. We
consider three such terms, two employed before (W and
W ), and one (W), constructed as a linear friction term
for the squeezing motion of the quantum wave packet.

It is interesting to remark that the variational deriva-
tion of W, proposed in the Appendix provides us natu-
rally with an additional noise term. This term may in-
duce ‘“dipole”-like transitions between the stationary
states, or it might become important for the treatment of
a quantum Brownian particle. In general, the structure
of the noise appearing in TDSE due to the coupling to
the thermal bath was recently discussed [32] considering
self-consistent terms that lead to a chaotic trajectory of
the wave function in the Hilbert space. However, one
should note that chaotic aspects were observed in the
tunneling of the squeezed wave packets even without the
bath coupling [23,31].

The three dissipative terms were compared first on a
test system represented by a Gaussian wave packet in an
arbitrary harmonic oscillator potential. Without dissipa-
tion this wave packet remains Gaussian and it has two os-
cillatory modes, one for the center of mass and one for
the width. The analytical calculations have shown that a
complete damping of both modes appears only for W .
In this case, the center of mass oscillations have no fre-
quency shift and are damped according to an exponential
law, while the damping of the squeezing oscillations is
more complicated [Eqgs. (21) and (22)]. The term W,
produces a frequency shift for the center of mass oscilla-
tions and an exponential damping law, but proves to have
no effect on the squeezing motion. Therefore, the com-
plementary term W, (23) was constructed, damping
completely the squeezing oscillation but having no effect
on the center of mass motion.

The numerical analysis of the dissipative tunneling

process in an asymmetric double-well potential has re-
vealed important aspects that were not observed before.
On short time the friction may have two opposite tenden-
cies, depending on the resonance parameter d: if d <d
prevents the escape in the stable well, slowing down the
process, or prevents the return to the metastable well of
the wave function already escaped if d =2d .. Thus, near
the resonance value d ., d acts as a control parameter for
the effect of dissipation on tunneling. A measure of this
effect is represented by the change in the half-tunneling
time T, and of T, presented in Fig. 7. For linear friction,
an interesting behavior was noticed at resonance, when y
becomes close to the self-trapping value: a quasistation-
ary state appears, when p is almost constant (0.5) during
a relatively large time interval, although the energy de-
creases.

At large times, p becomes very close to 1 for all mod-
els, but the energy goes to the ground-state value only in
the Gisin case. For the other damping terms, the final
state obtained was a Gaussian in the stable well perform-
ing low frequency oscillations of the average position and
width. This residual motion is damped with a very slow
rate, and a precise numerical investigation of the energy
loss in the asymptotic limit becomes difficult.

The interplay between dissipation and resonance effects
at tunneling presented above is the result of the exact cal-
culations using TDSE and it cannot be obtained by a
semiclassical treatment or within the two-level approxi-
mation. This is because the tunneling involves degrees of
freedom of the wave function without a classical
correspondent, while a consistent quantum description
requires, in our case, at least three levels; the two in reso-
nance and the true ground state. The present approach
does not have such limitations and, therefore, is quite
promising for further calculations with realistic poten-
tials.

APPENDIX

Let us consider the joint system of a quantum particle
and N classical harmonic oscillators (bath). If there is no
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coupling, the time evolution of the oscillator coordinates
g;, i =1,N, and of the wave function 1 may be obtained
from the variational equations

8ql-f[‘cl(qi’q.i )dt =0

and
8, [ L 9*)dt =0, (A1)
[33], where
N
L,=3% (m;g}—m;0q?) /2,
o (A2)

L,={y|i#id,—H,l|y) ,

and Hy=p?/2m +V(x) is the Hamiltonian operator of
the isolated quantum particle.

If there is coupling the superposition principle is
affected, and the joint system appears like a quantum sys-
tem with superselection variables [34,35]. For this sys-
tem, it is natural to assume that the dynamics will be
given also by a variational equation

S(qi,¢,¢*)f(LCI+Lq +Lcoup )dt =0 s (A3)

with L., a coupling term depending on g¢;, i =1,N,
¥,¢*, and eventually on their first time derivatives [36].
This variational equation may be written further in the
form

S(q,.,w,zp*)f

where H=H,+H,, and H, represents the bath energy
plus the interaction operator. For bilinear coupling, this
operator is

N

H,=3%

i=1

dt=0, (A4)

N
S m(g;)*+yli#d, —H|y)
=1

miqiz miw% g
+
2 2

Ci
q;+ 7
m;w;

(AS)

Following the variational procedure, the equations of
motion are

2 N N
iﬁ%’ﬁiz |H0+x7 S Ceitx S Ca, v, (A6
i=1 i=1
with g; =C, /m;»? and
_
4=
(A7)

Piz—miw%‘h_ci(le’ﬁ) .

The classical equations (A7) may be solved in terms of the
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unknown function of time (¢|x|¢)(,), and their ‘“retard-
ed” solution is

q;(0)

9;(1)=[g;(0)+g;{Ylx|¥) ) ]cos(w;t)+ sin(w;1)

—g{Ylx|¥)

d{y¢lx|y)

Lo (") ,
+g, fodt —— o —cos[a(t =] . (A8)
As expected, the classical bath oscillators are sensitive
only to the average position and velocity of the quantum
particle. Inserting this solution in (A6) we obtain a non-

linear Schrédinger equation i70,y=[H,+ W, ()]
with
W, () =W, —xEt)+x fo’r(z—t')wlpw)(,,)dz' )
(A9)
Here

Wren =(x2/2_x ( ’l!JIX‘l/J) )211“]=1Cigi ’

N
En=—T7 {Ci[q;(0)+g;(¢lx|¢) ) ]cosw;t

i=1

+C;4;(0)sin(w;t)/w;} ,
and

I(t)=m !'SN g,C.cosw;t .

The first term W, can be considered as a renormaliza-
tion potential in the intrinsic frame of the particle due to
the coupling. It has no contribution to the right-hand
side of the Ehrenfest Eqgs. (5) and (6) for the center of
mass motion and it will be neglected. For small N, £(z)
acts simply like an external driving force. If N is large
and the bath coordinate and momenta at ¢ =0 are statist-
ically distributed, then £(¢) represents the noise and is re-
lated to I'(¢) (the “memory function”) by the fluctuation-
dissipation theorem {{&(2)&(s)) =mkTT(t —s) [7], the
brackets meaning statistical averaging. When the bath
frequencies w; and the coupling constants C; are such
that I" becomes proportional to a 8 function, I'(2)=y8(¢),
with ¥ the friction coefficient, then the last term in (A9)
reduces to Albrecht’s term. However, one should em-
phasize that it might be difficult to find a physical system
satisfying all the peculiar conditions implied above.
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